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Chemically driven convection can stabilize Turing patterns
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We study the effects of chemically driven convection on Turing structures. We consider a model where
convective motion is generated by density gradients due to concentration variations of the Turing structures in
a thin horizontally infinite layer of a solute reaction-diffusion system. We study this system with envelope
equations and find that the coupling to chemically driven convection modifies the nonlinear coefficients in
these equations. For a roll structure we show that this coupling can stabilize pure Turing patterns. An experi-

mental setup to investigate these effects is proposed.

PACS number(s): 47.70.Fw, 05.70.Ln, 47.20.Ky

In 1952 Turing [1] demonstrated that the competition of
chemical reactions and diffusion can give rise to a rich vari-
ety of pattern forming instabilities. In particular, Turing
showed that the wavelength of the resulting stationary pat-
terns is independent of the characteristic lengths in the sys-
tem, a feature that is qualitatively different from the case of
many hydrodynamic instabilities for which the wavelength
of the patterns is often given by the geometry of the setup.
This is, for example, the case for Rayleigh-Bénard convec-
tion and for Taylor vortex flow. Apart from chemical systems
this mechanism is also relevant to pattern forming biological
systems [2] which were Turing’s main motivation. Only
quite recently experimental evidence for the existence of
Turing structures [3,4] in comparatively simple chemical
systems emerged. These structures were observed in
reaction-diffusion systems embedded in a gel strip where one
species of the reaction-diffusion system is effectively trapped
in the gel to provide a big difference in the diffusion coeffi-
cients of activator and inhibitor which tends to increase the
volume of parameter space where stationary instabilities can
occur. Another reason for using gel as a medium for reaction-
diffusion pattern forming systems is to avoid the develop-
ment of convective instabilities which are believed to destroy
the emerging Turing patterns. There seems to be no evidence
for the existence of Turing patterns in an aqueous solution
where convection is possible. But it has been shown that the
gel does not seem to be crucial in providing a difference in
the diffusion coefficients of the activator and inhibitor spe-
cies [5]. This difference — for example in the chlorite-
iodide-malonic-acid (CIMA) reaction — rather seems to de-
pend on the concentration of starch molecules in which one
of the reacting species can be trapped and diffuses therefore
more slowly since starch is a fairly big molecule with a dif-
fusion coefficient smaller than that of the usual species in
water by one order of magnitude. Without the gel Turing-like
patterns could still be observed [5]. In this case convective
motion is possible, which leads to the question of how these
Turing patterns will interact with the convective flow they
induce via concentration or temperature gradients produced
by the chemical reactions.

While for the case of oscillatory unstable or excitable
reaction-diffusion systems there are numerous studies on the
interactions of the oscillatory chemical patterns and convec-
tion in aqueous solutions [6-9], triggered by experimental
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evidence [10,11], there has not been much work on the in-
teraction of Turing structures and the convective flows they
induce in aqueous solutions. The works published so far are
mainly numerical studies of the problem in a restricted ge-
ometry [12]. There has, however, been some work on the
interaction of Turing patterns and an imposed hydrodynamic
flow [13,14], which was not driven by the Turing patterns.
Here we investigate the emergence of Turing patterns under
chemically driven convection close to the onset of the sta-
tionary instability using amplitude expansions.

To be definite, consider an isothermal solute reaction-
diffusion system in a thin horizontally infinite layer of thick-
ness L with free-free boundary conditions for the fluid mo-
tion and Dirichlet boundary conditions for the concentrations
in the z-direction. The system is described by the following
set of equations:

dv;=0, (1)
po(dw;+v;djv;)=—9;p—pgdizt+ vV3u;, 2
d,c;+v;d;c;—D;V?c;=fi(c,), (3

where we assume incompressibility. p is a function of the
concentrations of the two chemical species of the reaction-
diffusion system, whereas the density p,, the viscosity v,
and the diffusivities D; of the two chemical species c; are
assumed to be constant (generalized Boussinesq approxima-
tion). The functions f;(c;) describe the kinetics of the chemi-
cal reaction of the two species which are assumed to be in
general polynomials in ¢; and c¢,. As we will demonstrate in
the following, density gradients that are created and main-
tained by the chemical reaction will create fluid motion be-
cause of the density dependent gravity term in the momen-
tum equation for the fluid. This is somewhat similar to the
case of a container heated from the sidewalls in thermal con-
vection [15], where however the stress exerted on the fluid
layer now is of an intrinsic nature.

We consider the stability of the stationary constant con-

centration solutions (c1g,C29,v=0) to infinitesimal pertur-

bations (c; ,62,1; ) where we assume that the density p de-
pends on the concentrations and their small perturbations as
follows:
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p(c;)=po(ci0,c20) + aci+ Be,. 4)

The linear stability analysis shows that the system will un-
dergo a stationary, e.g., a Turing instability, if the condition

(KIIDZ_K22D1)2
4D1D2 :_KIZKZI (5)

is fulfilled. Another requirement is that the system has not
developed an oscillatory stability before the threshold for the
stationary instability is reached. Here k. is the wave number
of the most unstable wavelength given by

2_KuD2+KpD, a2

TN ©)

and the K;; are the components of the Jacobian of the kinetic
functions, df;/dc;, for the chosen equilibrium concentra-
tions (c10,Co0). These can be thought of as being controlled
via temperature or the concentrations of basic ingredients in
an experiment. There is a critical wave number if A2>0 or
otherwise the wave number that first becomes unstable is
zero corresponding to an infinite wavelength. We shall be
interested in finite wavelengths here. It is important to keep
in mind that the critical wave number is of an intrinsic na-
ture, determined by the details of the reaction-diffusion sys-
tem and not by the size of the experimental setup as is typi-
cally the case for hydrodynamic systems, for example in
Rayleigh-Bénard convection. In an experiment undertaken to
check the results of this analysis, one must therefore match
the system size, e.g., the thickness of the layer, with that
intrinsic wavelength. Otherwise effective two dimensionality
is no longer preserved and the system we are looking at
becomes more complicated. An apparatus similar to the one
investigated in this context has already been proposed [16].

To study the effect of convection on Turing structures we
proceed to look at the example of roll-like structures. An
extension of this analysis to hexagonal and square patterns as
well as to their competition with roll patterns will be given
elsewhere. We look at roll patterns in the weakly nonlinear
regime close to the onset of the instability using standard
perturbation expansion methods [17-19] to derive an enve-
lope equation that describes the long time and large scale
behavior of these roll-like solutions. In the first order of the
perturbation expansion the solution for the concentration per-
turbation is

c .
( l) =W(X,Y,T)e*Fcos(wz)

1
+c.c., 7)
() n

D, (k2+ ) =Ky,
n K s

®)

where we have introduced the amplitude of the roll-like so-
lution which only depends on the slow time coordinate T and
the rescaled horizontal coordinates (X,Y) whose dependence
on these coordinates has to be determined by solving the
equations for the higher orders in the perturbation expansion.
The corresponding solutions for the flow velocities are

v =ik xW(X,Y,T)e*Fsin(mz) +c.c., 9)
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vylzoa (10)

K2 :
Uzl == —75 XW(X,Y’ T)elkcxcos( 7TZ) +C'C" (11)

the first nontrivial contribution to v v
vy2= xyW(X,Y,T)e*sin(mz) +c.c., (12)

being of the next order in the perturbation expansion and
where

_gm(a+np) (13
X= v(ki+7?)? " )
As one sees the first contributions to the velocity in the ex-
pansion are of the same order as the first contributions to the
chemical concentration variations that drive convection. This
is qualitatively different from the case of the oscillatory in-
stability discussed in Ref. [20], where the first nontrivial con-
tributions to the velocity were only of second order.

The resulting envelope equation for rolls is then given by

DD
oW+ 15 283+ 2ik 0x)*W
+(y11K 22+ K11y~ Ki2¥21— ¥12K ) W/ 6= b3| W|*W,
(14)
where

8=D,(k*+ m?)—Kp+D (k2 + 7?)—Ky;. 15)

The v;; measure the small deviations of the linear coeffi-
cients of the chemical reaction kinetics polynomials which
control onset of the chemical instability and determine its
threshold from their critical values into the Turing unstable
region of the parameter space of the system in question.
They are a measure for the strength of the chemical instabil-
ity [18]. The cubic coefficient in the amplitude equation
whose explicit form is rather lengthy and will therefore be
given in a longer paper contains contributions from the con-
vective term in the reaction-diffusion system, whereas the
advection terms of the velocity equations do not contribute to
the cubic coefficient as is the case for Rayleigh-Bénard con-
vection [17,19]. It should be noted that this contribution to
the cubic coefficient will always lower the value of the cubic
coefficient and hence increase the stabilizing contributions to
the cubic term in the envelope equation. This is due to the
explicit mathematical form of the terms that describe the
coupling of convection to the chemical concentrations and
vice versa. They have the same form as in the case of the
coupling of the temperature field to convection and vice
versa in simple Rayleigh-Bénard convection where they re-
sult in the cubic coefficient which gets only one contribution
from the advective term in the temperature equation always
saturating the envelope equation for the roll solution [17,19].
Therefore convection enhances the stability of the roll solu-
tion. Namely, if convection results in a negative cubic coef-
ficient where, without convection, there would be a positive
cubic coefficient, a roll structure that would otherwise be
unstable is stabilized, if convection is present, and therefore
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FIG. 1. (a) is a plot of the dimensionless critical wave number k. as a function of b where d=0.3, y=80, Sc=2000, R;=1X 1074, and
R,=0. The critical wave number k.= v that matches the layer depth is reached at approximately b= 0.35. (b) is a plot of the dimensionless
cubic coefficient b3 where the solid line denotes the case without convection and the dashed line the case with convection.

some other pattern that exists in the absence of convection
might be replaced by the roll solution under convection.

To demonstrate this possibility we have calculated the co-
efficient in question for a particular model reaction-diffusion
system — the Schnakenberg model [21,22]. Equations (1)—
(3), when specialized to the Schnakenberg model and after
suitable reduction of parameters, read

6’,‘01‘:0, (16)
a[Ui+Uj(9jl)i_V2Ui+aip:_SC(Rl C1+R2 C2)6i3, (17)
d,c1+v;d.ci—=— Ve =—y—(a—-c +cc,) (18)

t“1 JjYj¢1 Sc 1 Sc 1 1¢2/>
dye3— — Viey= L (b—c2 19
9iC2+V;0iC2— T Cz—S_C( ciC2), (19)

where

_ga’L3 kz 1/2 _gﬁLS k2 12 0
1~ DIV k3 ’ 2= DIV k3 > ( )
Se= 2 g=2a _L* 21
C_B:" _D2 ’ Y= D1 ’ ( )

v is the viscosity of the fluid in question, the parameter d is
the ratio of the diffusion coefficients D, and D,. The R; are
somewhat analogous to the Rayleigh number and Sc is the
Schmidt number associated with species 1. a and b are the
suitably rescaled dimensionless pool species concentrations,
which are controlled and held constant in an experiment and
determine the type of instability the system can undergo. We
introduced the thickness of the layer as relevant length scale.
The k; are the coefficients of the Schnakenberg model’s
chemical reaction terms.

The contributions of the convection to the cubic term in
the amplitude equation can lead to the stabilization of a roll-
type structure as can be seen in Fig. 1, where convection
results in a shift of the cubic coefficient for the relevant
parameter value b=0.35 towards a negative value which as-
sures saturation of the roll amplitude to cubic order. Stabili-
zation has been observed for different sets of parameters.

The parameters here are evaluated using »=10"2 cm?/s,
D;=5X10"°% cm?/s and assuming L1 mm. This leads to
Sc=2000 and we subsequently chose y=80. The parameters
d, Ry, R, were varied in the calculations.

Figure 2 demonstrates a situation where the cubic coeffi-
cient is already negative, but becomes more negative when
convection is taken into account. Furthermore, one can see
that a contribution of the second species to the density varia-
tion (R,#0) can reduce the effect, because the concentra-
tion ¢, is out of phase with the concentration ¢; (7<0). But
the effect is larger again, when R, is bigger than a certain
value that leads to a vanishing contribution to the cubic co-
efficient. All this is due to the fact that the coupling param-
eters R; appear in the relevant contribution to the cubic co-
efficient in the form (R, + 7R,)>.

In conclusion we have demonstrated that Turing patterns
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FIG. 2. This is a plot of the dimensionless cubic coefficient b5
as a function of b where d=0.5, y=80, Sc=2000, R;=1X 1074,
The critical wave number k.= 7 that matches the layer depth is
reached at approximately b=0.27. The solid line denotes the case
without convection. The short dashed line denotes the case with
convection and R,=0, whereas the long dashed line denotes the
case with convection, but with R,=1.5X 107>, and the dot dashed
line denotes the case with convection with R,=1X10"4. The par-
tial cancellation of the effects of the two different concentrations is
due to 7 being negative.
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and the convection induced by them are of the same order in
the perturbation expansion in the Schnakenberg model.
Therefore convection is important already close to onset of
the instability. The interaction of Turing patterns and convec-
tion results in the stabilization of roll patterns as compared to
the situation when convection is absent, e.g., in Turing struc-
tures in gel strips. This result indicates that coexistence of
chemically driven convection and Turing patterns driving
them is possible at least in the weakly nonlinear regime.
We have chosen the geometry of the system we were
looking at already in the spirit of what might be a promising
experimental setup to study these effects. In matching the
thickness of the fluid layer with the intrinsic wavelength of
the chemical instability we arrive at a quasi-two-dimensional
pattern forming system that is very similar to the situation
encountered in Rayleigh-Bénard convection or in electrocon-
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vection in liquid crystals. A layer much thicker than the criti-
cal intrinsic wavelength would result in three-dimensional
Turing structures [23] whose interactions with convection are
likely to be much more complicated and difficult to observe
than the system described here. So matching the intrinsic
wavelength of the system and the thickness of the apparatus
we are using to study chemically driven convection in Turing
patterns is essential to control the system and study it. We
think that it is also more likely to observe ordered structures
in the setup proposed here. To reduce experimental difficul-
ties it might be interesting to start studying the interaction of
Turing patterns and chemically driven convection in sol-like
media where the strength of convective flows could be re-
duced to a level that is easier to control.

Partial support of this work through the Deutsche For-
schungsgemeinschaft is gratefully acknowledged.

[1] A. M. Turing, Philos. Trans. R. Soc. London Ser. B 237, 37
(1952).

[2] J. D. Murray, Mathematical Biology (Springer-Verlag, Berlin,
1989).

[3] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys.
Rev. Lett. 64, 2953 (1990); P. De Kepper, V. Castets, E. Dulos,
and J. Boissonade, Physica D 49, 161 (1991).

[4] Q. Ouyang and H. L. Swinney, Nature (London) 352, 610
(1991).

[5] K. Agladze, E. Dulos, and P. De Kepper, J. Phys. Chem. 96,
2400 (1992).

[6] 1. Nagypal, G. Bazsa, and 1. R. Epstein, J. Am. Chem. Soc.
108, 3635 (1986); J. A. Pojman and I. R. Epstein, J. Phys.
Chem. 94, 4966 (1990); J. A. Pojman, I. R. Epstein, T. J.
McManus, and K. Showalter, ibid. 95, 1299 (1991).

[7]1 7. Rodriguez and C. Vidal, J. Phys. Chem. 93, 2737 (1989).

[8] J. W. Wilder, B. F. Edwards, and D. A. Vasquez, Phys. Rev. A
45, 2320 (1992); D. A. Vasquez, J. W. Wilder, and B. F. Ed-
wards, J. Chem. Phys. 98, 2138 (1993), and references therein.

[9] Th. Plesser, H. Wilke, and K. H. Winters, Chem. Phys. Lett.
200, 158 (1992).

[10] H. Miike, S. C. Miller and B. Hess, Chem. Phys. Lett. 144,
515 (1988); Phys. Rev. Lett. 61, 2109 (1988); Phys. Lett. A
141, 25 (1989).

[11] H. Miike, H. Yamamoto, S. Kai, and S. C. Muller, Phys. Rev.
E 48, 1627 (1993); S. Kai and H. Miike, Physica A 204, 346
(1994).

[12] D. A. Vasquez, J. W. Wilder, and B. F. Edwards, Phys. Rev.
Lett. 71, 1538 (1993).

[13] C. R. Doering and W. Horsthemke, Phys. Lett. A 182, 227
(1993).

[14] S. Ponce Dawson, A. Lawniczak, and R. Kapral, J. Chem.
Phys. 100, 5211 (1994).

[15] J. E. Hart, J. Atmos. Sci. 29, 687 (1972).

[16] Z. Nosticzius, H. Farkas, A. Schubert, J. Swift, W. D. McCor-
mick, and H. L. Swinney, in Spatio-Temporal Organization in
Nonequilibrium Systems, edited by S. C. Muller and Th.
Plesser (Projekt Verlag, Dortmund, 1992), p. 190.

[17] A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279
(1969).

[18] Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 54, 687
(1975).

[19] R. Graham, Phys. Rev. A 10, 1762 (1974).

[20] M. Diewald and H. R. Brand, Chem. Phys. Lett. 216, 566
(1993).

[21] J. Schnakenberg, J. Theor. Biol. 81, 389 (1979).

[22] V. Dufiet and J. Boissonade, J. Chem. Phys. 96, 664 (1992).

[23] A. De Wit, G. Dewel, P. Borckmans, and D. Walgraef, Physica
D 61, 289 (1992).



